Structure of the Mixed-Valence Compound Dipotassium Tribromo(pyridine)platinate(II) Pentabromo(pyridine)platinate(IV) Dihydrate*

By André L. Beauchamp, † Dharanidhar Layek and Theophile Theophanides
Département de Chimie, Université de Montréal, CP 6210, Succursale A, Montréal, Québec, Canada H3C 3 V 1

(Received 6 November 1981; accepted 11 January 1982)

Abstract

$\mathrm{K}_{2}\left[\mathrm{PtBr}_{3}\left(\mathrm{C}_{5} \mathrm{H}_{5} \mathrm{~N}\right)\right]\left[\mathrm{PtBr}_{5}\left(\mathrm{C}_{5} \mathrm{H}_{5} \mathrm{~N}\right)\right] .2 \mathrm{H}_{2} \mathrm{O}, \quad 2 \mathrm{~K}^{+} . \mathrm{C}_{10^{-}}$ $\mathrm{H}_{10} \mathrm{Br}_{8} \mathrm{~N}_{2} \mathrm{Pt}_{2}^{2-} .2 \mathrm{H}_{2} \mathrm{O}, M_{r}=1301 \cdot 9$, belongs to the orthorhombic space group Cmcm , with $a=5.606$ (1), $b=26.651$ (3), $c=8.343$ (2) $\AA, V=1246.5 \AA^{3}, Z=$ $2, D_{c}=3.468 \mathrm{~g} \mathrm{~cm}^{-3} ; \lambda($ Mo $K \bar{\alpha})=0.71067 \AA$ (graphite monochromator), $T=295 \mathrm{~K}, \mu(\mathrm{Mo} K \alpha)=$ $243.8 \mathrm{~cm}^{-1}, \mu(\mathrm{Cu} K \alpha)=393.6 \mathrm{~cm}^{-1}$. The structure was refined by full-matrix least squares on 346 independent nonzero reflections to an R factor of 0.042 . It consists of infinite chains of square-planar $\left[\left.\mathrm{Pt}^{\mathrm{II}} \mathrm{Br}_{3} \mathrm{py}\right|^{-}\right.$ions ($\mathrm{py}=$ pyridine) alternating with octahedral $\left[\mathrm{Pt}^{\mathrm{IV}} \mathrm{Br}_{5} \mathrm{py}\right]^{-}$ions. The Br atoms bridging consecutive Pt atoms along the chain are disordered on two positions. The water molecule forms two hydrogen bonds with terminal Br atoms on consecutive complex ions along the chain and a distorted tetrahedral environment about its O atom is completed by two K^{+} ions. The nine-coordinate K^{+}ion is at the center of an approximate trigonal prism, where the top and bottom planes consist of three terminal Br atoms from various chains. Extra contacts are established through the middle of the side faces with one bridging Br and two O atoms. The K^{+}ions and water molecules define infinite chains roughly parallel to the c axis. The py molecules are oriented at 55° from the $\mathrm{PtBr}_{3} \mathrm{~N}$ plane.

Introduction

X-ray work has now been carried out on a number of linear-chain halide-bridged $\mathrm{Pt}^{11}-\mathrm{Pt}^{\mathrm{IV}}$ mixed-valence compounds (Beauchamp, Layek \& Theophanides, 1982, and references therein). In all cases, the data were interpreted in terms of a strictly periodic . . . Hal$\mathrm{Pt}^{{ }^{I V}}-\mathrm{Hal} \ldots \mathrm{Pt}^{\mathrm{II}} \ldots \mathrm{Hal}-\mathrm{Pt}^{\mathrm{IV}}-\mathrm{Hal} \ldots \mathrm{Pt}^{1 \mathrm{I}} \ldots$ chain. However, the periodicity is usually lost in the directions perpendicular to the chain axis. In the simplest cases, the effect is restricted to the relative positions of the

[^0]short $\mathrm{Hal}-\mathrm{Pt}-\mathrm{Hal}$ bonds in adjacent chains: these pairs of short bonds are shifted by one $\mathrm{Pt}-\mathrm{Pt}$ distance along the chain in one half of the chains and in a random manner. This effect manifests itself by weak diffuse layer lines, in addition to the normal Bragg lines, in oscillation photographs of the crystal rotating about the chain axis. Only a few examples of three-dimensionally ordered compounds have been proposed (Matsumoto, Yamishita, Ueda \& Kida, 1978; Endres, Keller, Martin, Traeger \& Novotny, 1980; Matsumoto, Yamashita \& Kida, 1978), some of which have been criticized (Beauchamp et al., 1982).

In addition to the halogen, the coordination sphere of Pt in the compounds studied so far usually contained NH_{3} or small mono- of bidentate aliphatic amines. These ligands can form hydrogen bonds, which were found to play an important role in stabilizing the crystal. We felt that it would be interesting to study the effect of using a pyridine molecule (py), which cannot form hydrogen bonds and possesses a large and flat organic portion. The crystal structure of $\mathrm{K}_{2}\left[\mathrm{PtBr}_{3}-\right.$ py $]\left[\mathrm{PtBr}_{5} \mathrm{py}\right] .2 \mathrm{H}_{2} \mathrm{O}$ is reported in the present paper.

Experimental section

Crystallographic measurements

The compound was prepared as described by Werner (1896) and Werner \& Fassbender (1897) and the crystals were grown directly in the reaction mixture. They consist of very long red plates, in which the long edge corresponds, as usual, to the chain direction (a axis). Films were taken with two specimens which yielded the same results. The crystal used for intensity measurements had the dimensions: 0.043 [between faces (001) and $(00 \overline{1})] \times 0.003[(010)$ and $(010)] \times$ 0.55 mm [(100) and ($\overline{1} 00$)].

Oscillation photographs of the crystal rotating about the a axis clearly showed a Laue mirror. Normal Bragg layers were interleaved with weak diffuse layers, which indicated a superstructure similar to those reported in most other mixed-valence compounds of this type. The structure deduced from the normal Bragg layers is
© 1982 International Union of Crystallography
discussed here. Weissenberg photographs (levels 0,1 and 2) showed the additional Laue mirror of the orthorhombic system. From the systematic absences ($h k l, h+k \neq 2 n$ and $h 0 l, l \neq 2 n$), a set of three space groups was retained: Cmcm (No. 63), Cmc_{1} (No. 36) and $C 2 \mathrm{~cm}$ (alternative definition for $A m a 2$, No. 40).

The intensity data were recorded with an EnrafNonius CAD-4 diffractometer, following the procedure described previously (Beauchamp et al., 1982). A set of 651 independent $h k l$ reflections ($2 \theta \leq 50^{\circ}, h+k$ $=2 n$) was collected with Mo $K \alpha$ radiation. Slow scans were performed only on the reflections found to have a net intensity $I>\sigma(I)$ at the fast prescan. A total of 346 reflections considered to be significantly above background [$I \geq 3 \sigma(I)$] were retained for structure determination. These data were corrected for the effects of Lorentz-polarization and absorption (Gaussian integration, grid $8 \times 8 \times 8$, transmission coefficient: $0.53-0.92$).

At a later stage, when it was realized that the structure was severely disordered in group Cmcm , the possibility that the compound might belong to a less symmetrical space group was considered and it became important to determine whether the conditions of systematic absence given above were strictly obeyed. A new set of data was collected with the same crystal, by using the stronger and cleaner $\mathrm{Cu} K \bar{\alpha}$ radiation. All reflections of the $h k l$ octant ($2 \theta \leq 140^{\circ}$, including the h $+k \neq 2 n$ reflections) were measured by a slow scan. The ~ 600 presumably absent reflections had intensities $<3 \sigma(I)$ with only two exceptions: $010[I / \sigma(I)=8.0]$ and $201[I / \sigma(I)=8 \cdot 2]$. Both of these reflections showed very unsymmetrical backgrounds and their $I / \sigma(I)$ ratio would drop below 4 if the higher backgrounds were used. Therefore, this was not considered to affect seriously the validity of the conditions deduced from the film work and the Mo $K \bar{\alpha}$ data set.

Resolution of the structure

Space group Cmcm

A PtBr_{3} square-planar unit (with one corner missing) was deduced from the Patterson synthesis. In space group Cmcm, the Pt and the $\operatorname{Br}(2)$ atoms occupy equipoint 4(c) on the twofold axis at the intersection of two mirror planes. The two $\operatorname{Br}(1)$ atoms are symmetry equivalent and they occupy equipoint $8(f)$. Therefore the PtBr_{3} unit lies in a mirror plane and the site symmetry at Pt is 2 mm . In the two other space groups equally consistent with the systematic absences (i.e. $C m c 2_{1}$ and $C 2 \mathrm{~cm}$), some of the restrictions on the coordinates and the equivalence between the $\operatorname{Br}(1)$ atoms imposed in Cmcm would disappear, but the PtBr_{3} unit would have the same geometry and would be
similarly positioned in the cell. Consequently, this set of atomic positions was a suitable starting model to solve the structure, even if a lower-symmetry space group could eventually be adopted.

A difference Fourier (ΔF) map phased on PtBr_{3} provided information on the unknown portions of the cell:
(a) As expected, the missing corner of the square plane was found to be occupied by N of pyridine, which was positioned on the twofold axis already containing Pt and $\operatorname{Br}(2)$ lequipoint $4(c)$]. Another peak on the twofold axis, further away from Pt, corresponded to $\mathrm{C}(3)$ of the pyridine ring. However, since the pyridine molecule as a whole was neither coplanar with PtBr_{3}, nor perpendicular to it, the mirror planes produced two overlapping images of the ring, with N and $\mathrm{C}(3)$ as common atoms. Thus, the side atoms $\mathrm{C}(1)$ and $\mathrm{C}(2)$ were considered as disordered on a general equipoint with half occupancy.
(b) The bridging $\operatorname{Br}(3)$ atoms were found on two positions along the $\mathrm{Pt}-\mathrm{Pt}$ vector, symmetrically displaced from the midpoint between consecutive Pt atoms in the chain. This disordering is commonly observed in such compounds (Beauchamp et al., 1982). It was anticipated from the diffuse layer lines in the oscillation photographs, by the short chain axis ($a=$ $5.6 \AA$) and by the fact that the four Pt atoms in group Cmcm have to be symmetrically equivalent. The $\mathrm{Br}(3)$ atoms were distributed on equipoint $8(g)$ with an occupancy factor of 0.5 .
(c) The highest unexplained peak, found at $0,0.47$, $0 \cdot 03$, was obviously due to the K^{+}ion. From its coordinates, K^{+}had to sit on a mirror plane lequipoint $8(f)]$. Since there are only four K^{+}ions per cell, half occupancy through disorder was indicated; this was also consistent with the fact that full occupancy of the eight $8(f)$ sites would place two K^{+}ions too close together. Another peak in the $x=0$ section of the map, weaker than the previous one, but with the same characteristics, was assigned to the water oxygen. Thus K and O were placed each on an equipoint $8(f)$ with half occupancy.

Refinement was carried out by full-matrix least squares. Individual weights based on counting statistics were applied. Isotropic refinement of all known atoms converged to $R=\sum| | F_{o}\left|-\left|F_{\|}\right| / \sum\right| F_{o} \mid=0.091$ and $R_{w}=\left[\sum w\left(\left|F_{o}\right|-\left|F_{c}\right|\right)^{2} / \sum w \mid F_{o}{ }^{\prime}\right]^{1 / 2}=0.107$ (nonzero reflections only). The Pt, Br and K atoms were then refined anisotropically and this reduced R to 0.045 and R_{w} to 0.058 . The H atoms on pyridine were fixed at their calculated positions (isotropic $B=$ $5.0 \AA^{2}$). Their parameters were not refined, but their coordinates were recalculated after each cycle of refinement. The H atoms of the water molecule were not visible on the ΔF map. In the last cycles, a secondary-extinction parameter was also included in the refinement. The final values of R and R_{w} were 0.042

Table 1. Refined fractional coordinates ($\times 10^{3}$, for Pt , $\mathrm{Br}, \mathrm{K} \times 10^{4}$) and equivalent isotropic temperature factors $\left(\times 10^{3}\right.$, for $\left.\mathrm{Pt} \times 10^{4}\right)$

$U_{\text {eq }}=\frac{1}{3} \sum_{i} \sum_{j} U_{i j} a_{i}^{*} a_{j}^{*} \mathbf{a}_{i} \cdot \mathbf{a}_{j}$.				
	x	y	z	$U_{\text {eq }}\left(\dot{\AA}^{2}\right)$
Pt	0	1135 (1)	2500	271 (6)
$\mathrm{Br}(1)$	0	1144 (2)	5428 (4)	55 (1)
$\mathrm{Br}(2)$	0	222 (2)	2500	48 (2)
$\operatorname{Br}(3) \dagger$	4425 (10)	1111 (3)	2500	58 (3)
K \dagger	0	4733 (7)	318 (20)	59 (7)
N	0	192 (1)	250	24 (9)
$\mathrm{C}(1) \dagger$	167 (8)	215 (2)	174 (5)	41 (11)
$\mathrm{C}(2) \dagger$	171 (12)	269 (2)	168 (7)	91 (22)
C(3)	0	297 (2)	250	58 (16)
O \dagger	0	441 (2)	158 (6)	69 (17)
$\mathrm{H}(1)^{*} \dagger$	289	197	122	63
H(2)* \dagger	291	286	107	63
$\mathrm{H}(3)^{*}$	0	333	250	63
* Not refined. \dagger Atoms involved in the disorder.				

and 0.055 , respectively. The goodness-of-fit ratio was 1.56. The final ΔF map was essentially featureless: five peaks in the range $0.7-1.4 \mathrm{e} \AA^{-3}$ were found near Pt or Br , while the general background was $< \pm 0.5 \mathrm{e} \AA^{-3}$.
The coordinates refined in group Cmcm are listed in Table 1.* The form factors used are those of Cromer \& Waber (1965) except for H (Stewart, Davidson \& Simpson, 1965). The f^{\prime} and $f^{\prime \prime}$ components of anomalous dispersion were included in the structure factor calculation for Pt, Br and K (Cromer, 1965).

Lower symmetry

Refinement in space group Cmcm revealed three disordered regions in the asymmetric unit. As an ordered structure would appear to be disordered when refined in a space group containing symmetry elements absent from the 'true' cell, we decided that less symmetrical space groups should be considered, in spite of the low R factor in Cmcm . Indeed, the atoms involved in the disorder represent a small fraction of total electron density, compared with the ordered $\mathrm{PtBr}_{3} \mathrm{~N}$ unit. Therefore, improper description of some of these light-atom positions is not expected to produce dramatic effects on the R factor.
The $\operatorname{Br}(3)$ atoms were expected to remain disordered, irrespective of the space group, for the reasons given above. Thus, we tried to find space groups likely to generate ordered arrangements for the pyridine

[^1]ligands and/or the $\mathrm{K}-\mathrm{O}$ chains. From the positions of the ordered $\mathrm{PtBr}_{3} \mathrm{~N}$ units, it was deduced that none of the C-orthorhombic space groups could make these two regions simultaneously ordered. Indeed, these space groups possess either a twofold axis or a mirror plane through the $\operatorname{Br}(2)-\mathrm{Pt}-\mathrm{N}$ bonds. The former symmetry element inevitably introduces disorder in the $\mathrm{K}-\mathrm{O}$ chain, the latter in the pyridine ligand.
Space group $C m c 2_{1}$, which has the same set of systematic absences as Cmcm, would be consistent with ordered $\mathrm{K}-\mathrm{O}$ chains. Refinement in this noncentrosymmetric space group was undertaken. The atomic positions found in Cmcm were transposed to $\mathrm{Cmc} 2_{1}$, with Pt on equipoint $4(a)$ at $z=\frac{1}{4}$ to define the origin along c. The ordered K and O atoms occupied one $4(a)$ equipoint each, while $\mathrm{Br}(1), \mathrm{C}(2)$ and $\mathrm{C}(3)$ were split into two nonequivalent sets. Least-squares refinement led to high correlations between the positional and thermal parameters of these two sets, but convergence was slowly attained. Attempts to refine $\operatorname{Br}(3)$ anisotropically resulted in imaginary thermal ellipsoids. In the final cycle $\left(\operatorname{Pt}, \operatorname{Br}(1), \operatorname{Br}\left(1^{\prime}\right), \operatorname{Br}(2)\right.$ and K anisotropic, other nonhydrogen atoms isotropic], the R factor was 0.048 . The overall geometry did not differ greatly from Cmcm , but unrealistic distances were found in the pyridine ring: $\mathrm{C}-\mathrm{N}, 1.30$ and $1.04 \AA$; $\mathrm{C}-\mathrm{C}, 0.93,1.99,1.66$ and $1.87 \AA$. Therefore, the Cmc 2 , model was not considered as an improvement over Cmcm .
Group $C 2 \mathrm{~cm}$, the other noncentrosymmetric space group derived from Cmcm , would retain the simultaneous disorder in the pyridine region and in the $\mathrm{K}-\mathrm{O}$ chains. This group was not investigated further.
The only C-orthorhombic group that could make pyridine ordered (but the $\mathrm{K}-\mathrm{O}$ chains disordered) is $C 222_{1}$. Attempts similar to those described above were made in this space group, but the least-squares calculations failed to converge. This model differed from Cmcm only in the positions of some C atoms and this was clearly not sufficient to hold the structure in space group C222, (assuming that the compound belongs to this group). Furthermore, there were no nonzero reflections among the $h 0 l, l \neq 2 n$ reflections, which should not be absent in C222. We thus conclude that this model should not be retained.
Ordered arrangements of the pyridine ligands and $\mathrm{K}-\mathrm{O}$ chains would require a still lower symmetry, such as a P-orthorhombic cell. These space groups would produce nonzero reflections among the $h k l, h+k \neq 2 n$ data and this was not detected. We conclude that Cmcm is the only satisfactory model to explain our results.

Description of the structure

The crystal contains infinite chains of complex anions parallel to the a axis (Fig. 1). In the ideally ordered

Fig. 1. Portion of the infinite chain of $\left[\mathrm{PtBr}_{3} \mathrm{py}^{-}\right.$and $\left[\mathrm{PtBr}_{5} \mathrm{py}\right]^{-}$ ions along the a axis. The dotted lines correspond to the bridging Br atoms in one half of the chains. The thin bonds represent hydrogen bonds formed by the water molecule with $\mathrm{Br}(1)$ atoms in consecutive anions. The thermal ellipsoids correspond to 50% probability.
chain, square-planar $\left[\mathrm{Pt}^{\mathrm{II}} \mathrm{Br}_{3} \mathrm{py}\right]^{-}$ions alternate with octahedral $\left[\mathrm{Pt}^{\mathrm{N}} \mathrm{Br}_{5} \mathrm{py}\right]^{-}$ions, two trans Br atoms in the latter anion acting as bridging groups between the metal atoms. Any given chain in such compounds is believed to be rigorously ordered. However, for one half of the chains and in a random manner, the pairs of short $\mathrm{Br}-\mathrm{Pt}-\mathrm{Br}$ bonds are displaced by one $\mathrm{Pt}-\mathrm{Pt}$ distance along the chain axis (dotted bonds in Fig. 1). The same pattern would be produced if all the bridging Br atoms in a chain moved simultaneously away from the close $\mathrm{Pt}^{1 \mathrm{~V}}$ atom, in the direction of P^{11}, which would become $\mathrm{Pt}^{\text {IV }}$ in the process. So, the average structure deduced from X-ray data makes all the Pt atoms symmetrically equivalent, with two half-bromine atoms at 2.481 (6) \AA and two more at 3.126 (6) \AA. This model is consistent with the presence of weak diffuse scattering layers in the oscillation photographs.

The $\mathrm{Pt}-\mathrm{Br}$ distances along the chain (Fig. 2) are in the ranges $(2.45-2.49$ and $3.07-3.14 \AA$, respectively) observed for $\left[\mathrm{PtBr}_{2}\left(\mathrm{NH}_{3}\right)_{2}\right]\left[\mathrm{PtBr}_{4}\left(\mathrm{NH}_{3}\right)_{2}\right](\mathrm{Kel}-$ ler, Keppler, Ledezma-Sanchez \& Steiger, 1981), $\left[\mathrm{PtBr}_{2}(\mathrm{en})\right]\left[\mathrm{PtBr}_{4}(\mathrm{en})\right]$ (en $=$ ethylenediamine, Ryan \& Rundle, 1961) and $\left[\mathrm{Pt}^{\left.\left(\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{NH}_{2}\right)_{4}\right]\left[\mathrm{PtBr}_{2}, ~\right.}\right.$ $\left.\left(\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{NH}_{2}\right)_{4}\right] \mathrm{Br}_{4}$ (Craven \& Hall, 1966; Brown \& Hall, 1976). The difference between the $\mathrm{Pt}-\mathrm{Br}$ distances is somewhat reduced ($2.54-2.56$ and $2.92-2.96 \AA$) in the trimethylenediamine (tn) complexes $\left[\mathrm{Pt}(\mathrm{tn})_{2}\right]\left[\mathrm{PtBr}_{2}\right.$ $(\mathrm{tn})_{2} \mid X_{4}\left(X=\mathrm{ClO}_{4}^{-}, \mathrm{BF}_{4}^{-}\right.$, Matsumoto, Yamashita \& Kida, 1978). The [$\left.\mathrm{Pt}(\mathrm{en})_{2} \| \mathrm{PtBr} \mathbf{P}_{2}(\mathrm{en})_{2}\right]\left(\mathrm{ClO}_{4}\right)_{4}$ system, with $\mathrm{Pt}-\mathrm{Br}$ distances of 2.71 (2) and 2.76 (2) \AA (Endres et al., 1980), seems to behave differently.

The terminal $\mathrm{Pt}-\mathrm{Br}$ bonds are equal within experimental errors and their average value $[2.440$ (4) $\AA]$ is

Fig. 2. Interatomic distances (\AA) and bond angles $\left({ }^{\circ}\right)$ around Pt . The values not shown are related to those shown in the figure by the 2 mm symmetry at Pt (see diagram on the left).
in good agreement with those found for other Pt compounds (Keller et al., 1981; Ryan \& Rundle, 1961; Bokii \& Kukina, 1965; Russell, Tucker \& Whittaker, 1975; Messmer \& Amma, 1966; Mélanson, Rochon \& Hubert, 1979; Mélanson, Hubert \& Rochon, 1975). The $\mathrm{Pt}-\mathrm{N}$ distance $[2.09$ (4) \AA] is also normal (Keeton, Mason \& Russell, 1971; Colamarino \& Orioli, 1975; Caira \& Nassimbeni, 1975; Thiele \& Wagner, 1978; Meester, Olie, Sint \& Schenk, 1975). Space-group symmetry requires that the bonds to the four nonbridging ligands be in a crystallographic mirror plane. The angles not fixed by this symmetry are all close to the ideal values of 90 or 180° (Fig. 2).

The geometry of the pyridine ligand is normal (Fig. 2) and the ring is planar within $0.2 \AA(0.3 \sigma)$. The rings make an angle of $55(2)^{\circ}$ with the $\mathrm{PtBr}_{3} \mathrm{~N}$ plane and because of the mirror planes in the space group, they exist in two disordered orientations. As shown in the packing pattern (Fig. 3), the Pt chains are so oriented that the pyridines are restricted to layers parallel to $a c$, at $y \sim \frac{1}{4}$ and $\frac{3}{4}$, in which the interactions are of the van der Waals type. Inspection of the inter-ring contacts

Fig. 3. Projection of the unit cell down the chain direction (a axis). The atoms are represented by spheres of arbitrary size and they can be identified by reference to Fig. 2. The two disordered patterns for the pyridine rings and $\mathrm{K}-\mathrm{O}$ chains are illustrated.

Table 2. Environment of the K^{+}ion and the water molecule

Distances (\AA)			
$\mathrm{K}-\mathrm{O}(1)^{1}$	2.78 (6)	$\mathrm{K}-\mathrm{Br}(3)^{\text {viii.ix }}$	$3 \cdot 27$ (2)
$\mathrm{K}-\mathrm{O}(1)^{\text {i }}$	2.73 (6)		
$\mathrm{K}-\mathrm{Br}(1)^{\text {Hi,iv }}$	3.65 (1)	$\mathrm{O}^{\mathbf{i}-\mathrm{K}^{\text {x }}}$	2.73 (6)
$\mathrm{K}-\mathrm{Br}(2)^{\mathrm{r}, \mathrm{vi}}$	3.59 (1)	$\mathrm{O}^{\mathbf{i}}-\mathrm{Br}(1)^{\text {xi,xii }}$	$3 \cdot 31$ (3)
$\mathrm{K}-\mathrm{Br}(2)^{\text {vii,viii }}$	$3 \cdot 66$ (1)		
Angles (${ }^{\circ}$)			
$\mathrm{O}^{\mathbf{i}}-\mathrm{K}-\mathrm{O}^{\text {i }}$	143 (1)	$\mathrm{Br}(2)^{\mathrm{v}}-\mathrm{K}-\mathrm{Br}(2)^{\text {vi }}$	$102 \cdot 8$ (4)
$\mathrm{O}^{\mathrm{i}}-\mathrm{K}-\mathrm{Br}(1)^{\text {lii.iv }}$	123 (1)	$\operatorname{Br}(2)^{v}-\mathrm{K}-\operatorname{Br}(2)^{\text {vii }}$	73.5 (3)
$\mathrm{O}^{1}-\mathrm{K}-\mathrm{Br}(2)^{\text {r, v1 }}$	89 (1)	$\operatorname{Br}(2)^{v}-\mathrm{K}-\operatorname{Br}(2)^{\text {viii }}$	155.8 (4)
$\mathrm{O}^{1}-\mathrm{K}-\operatorname{Br}(2)^{\text {vil, vil }}$	67 (1)	$\mathrm{Br}(2)^{\text {v }}-\mathrm{K}-\mathrm{Br}(3)^{\text {ix }}$	$133 \cdot 8$ (4)
$\mathrm{O}^{\mathbf{i}}-\mathrm{K}-\mathrm{Br}(3)^{\text {vii,1x }}$	99 (1)	$\operatorname{Br}(2)^{2}-\mathrm{K}-\mathrm{Br}(3)^{\text {vii }}$	122.5 (4)
$\mathrm{O}^{i 1}-\mathrm{K}-\mathrm{Br}(1)^{\mathrm{m}, \mathrm{w}}$	77 (1)	$\operatorname{Br}(2)^{\text {vij }}-\mathrm{K}-\operatorname{Br}(2)^{\text {viii }}$	99.9 (3)
$\mathrm{O}^{\mathrm{iI}}-\mathrm{K}-\mathrm{Br}(2)^{\text {v.vi }}$	68 (1)	$\operatorname{Br}(2)^{\text {vii }}-\mathrm{K}-\operatorname{Br}(3)^{\text {vii }}$	59.0 (3)
$\mathrm{O}^{\text {li }}-\mathrm{K}-\mathrm{Br}(2)^{\text {vil, vili }}$	128 (1)	$\operatorname{Br}(2)^{\text {vii }}-\mathrm{K}-\mathrm{Br}(3){ }^{\text {ix }}$	68.7 (3)
$\mathrm{O}^{11}-\mathrm{K}-\mathrm{Br}(3)^{\text {vil. } 1 \times}$	118 (1)	$\mathrm{K}-\mathrm{O}^{\mathbf{i}}-\mathrm{K}^{\text {x }}$	106 (1)
$\mathrm{Br}(1)^{\text {ili }}-\mathrm{K}-\mathrm{Br}(1)^{\text {iv }}$	$100 \cdot 3$ (4)	$\mathrm{K}-\mathrm{O}^{\mathbf{i}}-\mathrm{Br}(1)^{\text {xixxii }}$	102 (1)
$\operatorname{Br}(1)^{\text {iii }}-\mathrm{K}-\mathrm{Br}(2)^{\mathrm{V}}$	67.7 (3)	$\mathrm{K}^{\mathrm{x}}-\mathrm{O}^{i}-\mathrm{Br}(1)^{\mathrm{x}, \times \text { xi }}$	115 (1)
$\operatorname{Br}(1)^{\text {lii }}-\mathrm{K}-\mathrm{Br}(2)^{\text {vi }}$	145.1 (4)	$\operatorname{Br}(1)^{\text {xi }}-\mathrm{O}^{i}-\operatorname{Br}(1)^{\text {xii }}$	116 (1)
$\mathrm{Br}(1)^{\text {iii }}-\mathrm{K}-\operatorname{Br}(2)^{\text {rii }}$	56.6 (2)		
$\operatorname{Br}(1)^{\text {iii }}-\mathrm{K}-\operatorname{Br}(2)^{\text {vili }}$	128.7 (4)		
$\operatorname{Br}(1)^{1 \mathrm{II}}-\mathrm{K}-\mathrm{Br}(3)^{\text {ix }}$	69.7 (3)		
$\operatorname{Br}(1)^{\text {lii }}-\mathrm{K}-\operatorname{Br}(3)^{\text {vii }}$	$60 \cdot 1$ (3)		
Symmetry code: (i) $x, 1-y,-z$; (ii) $x, y, \frac{1}{2}-z$; (iii) $-\frac{1}{2}+x, \frac{1}{2}-y$,			
$-\frac{1}{2}+z$; (iv) $\frac{1}{2}+x, \frac{1}{2}-y,-\frac{1}{2}+z ;$ (v) $-\frac{1}{2}+x, \frac{1}{2}+y, z ;$ (vi) $\frac{1}{2}+x$,			
$\frac{1}{2}+y, z$; (vii) $-\frac{1}{2}+x, \frac{1}{2}-y,-z$; (viii) $\frac{1}{2}+x, \frac{1}{2}-y,-z$; (ix) $\frac{1}{2}-x$,			
$\frac{1}{2}-y,-z ;$ (x) $x, 1-y,-\frac{1}{2}+z$; (xi) $\frac{1}{2}+x, \frac{1}{2}+y, \frac{1}{2}-z$; (xii) $-\frac{1}{2}+x$,			
$\frac{1}{2}+y, \frac{1}{2}-z$.			

shows that the rings cannot assume these two orientations at random. Two pyridine rings with the same orientation on adjacent chains would produce a very short $\mathrm{H}(1) \cdots \mathrm{H}(2)$ contact of $2.01 \AA$ (sum of the van der Waals radii, $2.40 \AA$) (Cotton \& Wilkinson, 1972), whereas opposite orientations within the same chain would lead to a $\mathrm{H}(2) \cdots \mathrm{H}(2)$ contact of $2.34 \AA$. The most likely arrangement is the one with the same orientation for all rings belonging to the same chain, but an alternance when moving from chain to chain. The resulting layer would then be ordered along the a and \mathbf{c} directions. The periodicity is destroyed in the \mathbf{b} direction, since there are apparently no restrictions for the next layer to assume the same pattern rather than its mirror image.

Although the H atoms of the water molecule were not positively identified in the Fourier map, it is clear that they are involved in hydrogen bonding with $\operatorname{Br}(1)$ atoms belonging to consecutive $\mathrm{PtBr}_{3} \mathrm{~N}$ units along the chain (Fig. 1 and Table 2). The $\mathrm{O} \cdots \mathrm{Br}$ distance [3.31 (3) \AA] is in the center of the range ($3 \cdot 17-3 \cdot 38 \AA$) proposed by Stout \& Jensen (1968) for $\mathrm{O}-\mathrm{H} \cdots \mathrm{Br}$ systems. Two K^{+}ions lying roughly along the lone pairs complete the distorted tetrahedral environment of oxygen.

The environment of the K^{+}ion includes two water O and seven Br atoms (Fig. 4 and Table 2). Two sets of

Fig. 4. Environment of the K^{+}ion in the cell. Bromine is represented by the numbers used in Fig. 2. The dashed portion represents the alternative position of the disordered $\mathrm{Br}(3)$ atom.
three coplanar terminal Br atoms define a trigonal prism with K^{+}at the center ($\mathrm{K} \cdots \mathrm{Br}=3.59-3.66 \AA$, $\sigma=0.01 \AA$). Extra contacts are established through the middle of the lateral faces, with two molecules at 2.73 (6) and 2.78 (6) \AA, respectively, and with a bridging Br atom at 3.27 (2) \AA in one of the two disordered positions. This geometry is found in a number of nine-coordinate species (Cotton \& Wilkinson, 1972). The $\mathrm{K} \cdots \mathrm{O}$ distances compare well with those found in carboxylates (Wyckoff, 1969) and in hydrated compounds such as Zeise's salt (Love, Koetzle, Williams, Andrews \& Bau, 1975). The $\mathrm{K}-\mathrm{Br}$ contacts are in the normal range (Bokii \& Kukina, 1965), but it is noteworthy that the interaction with the bridging Br atom is particularly short [3.27 (2) \AA]; this value corresponds to the sum of the radii of K^{+}and Br^{-}(Cotton \& Wilkinson, 1972).

The water molecules and K^{+}ions define infinite chains parallel to the c axis (Fig. 3). These chains are found in two disordered patterns, related by a twofold axis. The interactions in the chain and with the rest of the structure remain the same in both orientations.

Discussion

The model proposed for this structure involves twofold disorder in three regions of the asymmetric unit. It is interesting to speculate on whether these three regions can assume independently either pattern, or these disordered regions are correlated.

From packing considerations, it was possible to propose a likely arrangement of the pyridine rings within any given layer. However, there seems to be no particular interaction with the rest of the structure which would force the next layer to assume the same or
the opposite pattern. The arrangement adopted in one layer probably depends on the way the first units of this layer were assembled at the time the chains started to grow. Thus, the disorder of the pyridine rings seems to result from a non-periodic repetition of two-dimensionally ordered layers and this part of the structure is probably independent of the disorder affecting other regions.

The situation is not so clear with the bridging halogen and the $\mathrm{K}-\mathrm{O}$ chains. There is a short contact between K^{+}and the bridging Br atom $[3.27$ (2) \AA] (Fig. 4). However, the overall coordination geometry of K^{+}is not improved by using one possible position of $\operatorname{Br}(3)$ instead of the other: both $\mathrm{K}-\mathrm{Br}(3)$ distances are symmetry equivalent and the angles around either K^{+} or $\operatorname{Br}(3)$ are just as favorable in both cases. So, there are no clear indications of strong correlations between the sets of atomic positions and we felt that these two regions should be considered independently.
It is interesting to examine whether this structure could participate in a disorder of dynamic origin. Reorganization of the pyridine layer is unlikely, since it would require rotation about the $\mathrm{Pt}-\mathrm{N}$ bond for all the rings in this layer. Similarly, the atoms in the $\mathrm{K}-\mathrm{O}$ chains would have to move around considerably to reach the alternative pattern. In particular, the K^{+}ion, which bridges a pair of $\operatorname{Br}(1)$ atoms, and the water molecule bridging the other pair, would have to exchange their role in the process. Therefore, we do not expect the disorder in these two regions to result from rapid exchange of positions in the crystal. On the other hand, the bridging Br atoms in a chain could probably all move, in a concerted manner, to the alternative positions, leading to a change of oxidation state in all Pt atoms in that chain. This process is more likely to take place, because it requires no reorganization of the rest of the structure.

References

Beauchamp, A. L., Layek, D. \& Theophanides, T. (1982). Acta Cryst. B38, 1158-1164.
Boкı, G. B. \& Kukina, G. A. (1965). Zh. Strukt. Khim. 6, 706-715.
Brown, K. L. \& Hall, D. (1976). Acta Cryst. B32. 279-281.

Caira, M. R. \& Nassimbeni, L. R. (1975). Acta Cry'st. B31, 581-582.
Colamarino, P. \& Orioli, P. L. (1975). J. Chem. Soc. Dalton Trans. pp. 1656-1659.
Cotton, F. A. \& Wilkinson, G. (1972). Advanced Inorganic Chemistrı, 3rd ed., pp. 29, 52, 120. New York: Interscience.
Craven, B. M. \& Hall, D. (1966). Acta Cryst. 21, 177-180.
Cromer, D. T. (1965). Acta Cryst. 18, 17-23.
Cromer, D. T. \& Waber, J. T. (1965). Acta Cru'st. 18, 104-109.
Endres, H., Keller, H. J. Martin. R.. Traeger, U. \& Novotny, M. (1980). Acta Cryst. B35. 1885-1887.
Keeton, M., Mason, R. \& Russell. D. R. (1971). J. Organomet. Chem. 33, 259-266.
Keller, H. J. Keppler, B., Ledezma-Sanchez. G. \& Steiger, W. (1981). Acta Cryst. B37, 674-675.
love, R. A., Koetzle, T. F., Williams, G. J. B., Andrews, L. C. \& Bau, R. (1975). Inorg. Chem. 14, 2653-2657.
Matsumoto, N., Yamashita, M. \& Kida, S. (1978). Bull. Chem. Soc. Jpn, 51, 3514-3518.
Matsumoto, N., Yamashita, M., Ueda, l. \& Kida, S. (1978). Mem. Fac. Sci. K!ushu Univ. Ser. C, 11, 209-216.
Meester, M. A. M., Olie, K., Sint, L. \& Schenk, H. (1975). Cryst. Struct. Commun. 4, 725-730.

Mélanson, R., Hubert, J. \& Rochon. F. D. (1975). Can. J. Chem. 53, 1139-1143.

Mélanson, R., Rochon, F. D. \& Hubert, J. (1979). Acta Cryst. B35, 736-738.
Messmer, G. G. \& Amma, E. L. (1966). Inorg. Chem. 5, 1775-1781.
Russell, D. R., Tucker, P. A. \& Whittaker, C. (1975). Acta Cry'st. B31, 2530-2531.
Ryan, T. \& Rundle, R. E. (1961). J. Am. Chem. Soc. 83, 2814-2816.
Stewart, R. F., Davidson, E. R. \& Simpson, W. T. (1965). J. Chem. Phy's. 42, 3175-3187.

Stout, G. H. \& Jensen, L. H. (1968). X-ray Structure Determination, p. 303. London: Macmillan.
Thiele, G. \& Wagner, D. (1978). Chem. Ber. 111. 3162-3170.
Werner, A. (1896). Z. Anorg. Chem. 12, 48.
Werner, A. \& Fassbender, F. (1897). Z. Anorg. Chem. 13, 123.

Wyckoff, R. W. G. (1969). Crystal Structures. Vols. 5 and 6. New York: Interscience.

[^0]: * Potassium catena- μ-bromo-tribromo(pyridine)platinate(II,IV) hydrate.
 \dagger To whom correspondence should be addressed.

[^1]: * Lists of structure factors, anisotropic thermal parameters and least-squares-plane calculations have been deposited with the British Library Lending Division as Supplementary Publication No. SUP 36726 (6 pp .). Copies may be obtained through The Executive Secretary, International Union of Crystallography, 5 Abbey Square, Chester CH 1 2HU, England.

